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Abstract: We consider double-scaling limits of multicut solutions of certain one matrix

models that are related to Calabi-Yau singularities of type A and the respective topologi-

cal B model via the Dijkgraaf-Vafa correspondence. These double-scaling limits naturally

lead to a bosonic string with c ≤ 1. We argue that this non-critical string is given by the

topologically twisted non-critical superstring background which provides the dual descrip-

tion of the double-scaled little string theory at the Calabi-Yau singularity. The algorithms

developed recently to solve a generic multicut matrix model by means of the loop equations

allow to show that the scaling of the higher genus terms in the matrix model free energy

matches the expected behaviour in the topological B-model. This result applies to a generic

matrix model singularity and the relative double-scaling limit. We use these techniques to

explicitly evaluate the free energy at genus one and genus two.
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1. Introduction

In [1], the large N limit of a class of N = 1 supersymmetric U(N) gauge theories was

studied. The theories are in a partially confining phase where an abelian subgroup Ĝ of

the gauge group remains unconfined. The large N spectrum contains the usual weakly

interacting glueballs, which are neutral under Ĝ, and also baryonic states which are elec-

trically and magnetically charged with respect to Ĝ, whose mass grows like N . The models

studied include the β-deformation of N = 4 Super Yang-Mills and N = 1 SYM coupled to

a single adjoint chiral superfield with a polynomial superpotential. At some isolated points

in the parameter/moduli space of the models, these baryons can become massless, and this

causes the 1/N expansion to break down. However, it is possible to define a double-scaling

limit in which N goes to infinity and the mass MB of these states is kept constant. The

crucial feature of this double-scaling limit is that there is a sector of the Hilbert space of

the theory which decouples from the rest and has finite interactions which are weighted

by the double-scaling parameter 1/Neff ∼
√

T/MB , where T is the tension of the confining

string. Furthermore, it was proposed in [1] that the dynamics of this emergent sector has

a dual description given in terms of a non-critical superstring of the type introduced in [2].

This dual formulation has the virtue that the worldsheet theory is exactly solvable and

that the background is free from Ramond-Ramond fluxes.
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The exact vacuum structure and F-terms of the N = 1 models with an adjoint chiral

field and a polynomial superpotential can be analyzed by means of the Dijkgraaf-Vafa

matrix model correspondence [3 – 5]. Indeed the proposal of [1] is based on a careful analysis

of these F-terms. The breakdown of the 1/N expansion corresponds to a singularity of the

matrix model spectral curve and therefore of the dual Calabi-Yau. The baryon states that

become massless correspond to D3-branes wrapping shrinking 3-cycles in the Calabi-Yau.

In [6], this analysis was extended to a more general class of singularities. Again, it was

found that at these particular points in the moduli space certain states become massless

and that in a suitable double-scaling limit, where the mass of these states is kept fixed,

a particular sector of the theory emerges with interactions governed by the double-scaling

parameter. There are two novel features in these models. First of all, contrary to the cases

considered in [1], there is no supersymmetry enhancement in the double-scaling limit. This

is signalled by the fact that the glueball superpotential does not vanish in the interacting

sector. In fact, this is also one of the reasons why the dual string background is not

determined explicitly. Secondly, in [6], some or all of the states that become massless are

neutral under the abelian subgroup Ĝ of the U(N) theory which remains unconfined. As

a consequence, the presence of these extra massless states may not affect the coupling

constants of Ĝ but is captured by the higher genus terms of the matrix model free energy

as in [7]. These terms control certain F-term interactions of the glueball fields with the

graviphoton and gravitational backgrounds [8, 9].

Another important feature that emerges from the analysis of [6] is that these large N

double-scaling limits correspond to double-scaling limits of the Dijkgraaf-Vafa matrix model

of the same kind that was considered in the ”old matrix model” era to study c ≤ 1 systems

coupled to two-dimensional gravity [10]. In particular, in [6] it was shown that the double-

scaling limits have a well-defined genus expansion in the sense that the genus g free energy

of the matrix model Fg scales like ∆2−2g ∼ M2−2g
B [6]. On the other hand, the singularities

and double-scaling limits considered in [1, 6] generally fall into different universality classes

from the ones usually considered in the old matrix model. It is natural to ask what is the

bosonic non-critical string that corresponds to these matrix model double-scaling limits and

what is the relation between the bosonic non-critical string and the non-critical superstrings

that enter in the dual description of the models considered in [1]. The answer to the first

question is provided by the Dijkgraaf-Vafa correspondence [3, 11, 12] that states that a

generic one matrix model with superpotential W (Φ) is mapped to the topological B model

on a non-compact Calabi-Yau of the form

uv + y2 + W ′(x)2 + deformations = 0 (1.1)

In taking a double-scaling limit, we tune the parameters of the superpotential and the

deformation polynomial so that we are in the neighbourhood of a particular singularity of

the above family of Calabi-Yaus. For instance in [1] we are close to an An−1 singularity

uv + y2 = xn − µ , (1.2)

whereas for the (2, 2p + 1) bosonic minimal model coupled to 2d gravity we would have

uv + y2 + x(x − ε1)
2 . . . (x − εp)

2 = 0 . (1.3)
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Figure 1: The bosonic non-critical string defined by the matrix model double-scaling limit at an

An−1 singularity corresponds to the A-twist of the above SL(2)/ U(1) × LG worldsheet theory.

Therefore, we conclude that the bosonic non-critical string corresponding to the matrix

model double-scaling limit of [1] is the topological B model at an An−1 singularity. The

case n = 2 corresponds to the conifold singularity.

A check that this is consistent is provided by the fact that the scaling of the matrix

model free energy Fg ∼ ∆2−2g matches exactly the scaling of the topological B model free

energy

Ftop,g ∼
(∫

Ω

)2−2g

g > 1 (1.4)

where Ω is the holomorphic 3-form on the Calabi-Yau [9]. In fact, the double-scaling

parameter ∆ corresponds precisely to the holomorphic volume of the 3-cycles that vanish

at the singularity. This is in turn proportional to MB , the mass of the baryonic states, which

come from D3-branes wrapping the shrinking supersymmetric 3-cycles. Furthermore, the

fact that in the double-scaling limit Fg ∼ ∆2−2g is a general result, it does not depend on

the particular class of singularities one considers. It was derived in [6] by means of the

recent algorithms to solve matrix models based on loop equations [13, 14]. These allow

to consider more general classes of singularities than were previously accessible via ”old

matrix model” techniques.

The non-critical superstring backgrounds that appear as dual to the large N double-

scaling limits studied in [1] are of the form

R
3,1 × (SL(2)k/U(1) × LG(W = Xn)) /Z , k =

2n

n + 2
, (1.5)

where LG(W ) denotes a Landau-Ginzburg theory with superpotential W . They were

initially introduced in [15] as holographic duals to the 4d double-scaled Little String Theory
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(DSLST) at a CY singularity of type An−1, generalizing the proposal of [16] and previous

work [17, 18]. The non-trivial part of the above background has central charge

ĉ = ĉsl + ĉLG =
k + 2

k
+

n − 2

n
= 3 , (1.6)

and it corresponds to the geometry [19]

µz−k + uv + y2 + xn = 0 , (1.7)

where z, u, v, y, x are homogeneous coordinates. This is equivalent to (1.2).

We argued, using the Dijkgraaf-Vafa correspondence, that the matrix model double-

scaling limits considered in [1] are equivalent to the topological B model at an An−1 singu-

larity (1.2). On the other hand, the matrix model captures the F-terms or topological terms

of the 4d DSLST [1] which are given by the topological sector of the SL(2)/U(1)×LG back-

ground (1.5), [15]. Therefore, we expect the non-critical string defined by the matrix model

double-scaling limits to be associated to a topologically twisted SL(2)k/U(1) × LG(Xn)

background.

This proposal fits nicely with certain known results about the topological twist of the

above background in the conifold case, n = 2, where the LG model is trivial. In fact

in [20], Ghoshal and Vafa argued that the A-twisted N = 2 SL(2)/U(1) supersymmetric

coset describes the topological B model on a deformed conifold. In [21], Mukhi and Vafa

had previously shown that the above A-twisted coset at level 1 is equivalent to the c = 1

non-critical bosonic string compactified on a circle at self-dual radius. The open and closed

sides of this map were recently analyzed in [22]. Therefore, as a direct generalization of

the conifold case, we expect that the non-critical bosonic string defined by the double-

scaling limit of [1] at an An−1 singularity should correspond to the A-twist of the above

SL(2)/U(1) × LG theory. In particular, for n = 2, the matrix model double-scaling limit

should be equivalent to the c = 1 string. This fact can be checked directly on the matrix

model side. Indeed, in the limit, the matrix model spectral curve becomes equivalent to

that of a Gaussian model [6] which is equivalent to the c = 1 non-critical string [3]. This

particular singularity is obtained from a 2-cut solution with a cubic superpotential in the

limit where the two cuts touch each other. The fact that this singular limit should be

related to the c = 1 non-critical string was also observed in [23].

The relation between strings on non-compact Calabi-Yaus and non-critical superstring

brackgrounds [19, 15] involving the N = 2 Kazama-Suzuki SL(2)/U(1) model or its mirror,

N = 2 Liouville theory [15, 24, 25], has been studied by several authors (see [26 – 28] and

references therein).

Furthermore, the relation between the topological sector of six-dimensional DSLSTs

defined at K3 singularities, the dual topologically twisted non-critical string backgrounds

which generalize (1.5), and certain non-critical bosonic strings, the (1, n) minimal bosonic

strings has been recently studied in [29 – 31] (see also [32 – 34] for related matters).

In the paper, we are going to use the matrix model double-scaling limit to study the

relative topological B model and non-critical bosonic string. In section 2, we will review

the matrix models studied in [1, 6] and the respective double-scaling limits. In section 3,
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we will review the proof that the genus g matrix model free energy Fg goes like ∆2−2g as

shown in [6]. As we said, this argument applies to a general matrix model double-scaling

limit and shows that the scaling of Fg is consistent with the expected behaviour of the

topological B model free energy Fg,top ∼
(∫

Ω
)2−2g

[9]. In section 4, we will evaluate the

genus one free energy F1 at the Am−1 singularities considered in [1]. This gives information

on the states that become massless at the singularity. In section 5, we compute the genus

two free energy relevant to the matrix models considered in [1]. The result shows concretely

how the double-scaling limit of F2 depends on the details of the near-critical spectral curve.

In the conifold case, the near-critical curve is a Riemann sphere and the general expression

simplifies drastically and matches the well-known result.

2. The double-scaling limit

In this section, we will review the matrix model singularities and relative double-scaling

limits studied in [1, 6]. Consider an N = 1 U(N) theory with a chiral adjoint field Φ and

superpotential W (Φ). The classical vacua of the theory are determined by the stationary

points of W (Φ)

W (Φ) = NTrN

[

`+1
∑

i=1

gi

i
Φi

]

. (2.1)

The overall factor N ensures that the superpotential scales appropriately in the ’t Hooft

limit. For generic values of the couplings, we find ` stationary points at the zeroes of

W ′(x) = Nε
∏̀

i=1

(x − ai) , ε ≡ g`+1 . (2.2)

The classical vacua correspond to configurations where each of the N eigenvalues of Φ takes

one of the ` values, {ai}, for i = 1, . . . , `. Thus vacua are related to partitions of N where

Ni ≥ 0 eigenvalues take the value ai with N1 + N2 + · · ·N` = N . Provided Ni ≥ 2 for all

i, the classical low-energy gauge group in such a vacuum is

Ĝcl =
∏̀

i=1

U(Ni) ≈
∏̀

i=1

U(1)i × SU(Ni) . (2.3)

Strong-coupling dynamics will produce non-zero gluino condensates in each non-abelian

factor of Ĝcl. If we define as Wαi the chiral field strength of the SU(Ni) vector multi-

plet in the low-energy theory, we can define a corresponding low-energy glueball superfield

Si = −(1/32π2)〈TrNi
(WαiW

αi)〉 in each factor. Non-perturbative effects generate a super-

potential of the form [35 – 37]

Weff(S1, . . . , S`) =
∑̀

j=1

Nj(Sj log(Λ3
j/Sj) + Sj) + 2πi

∑̀

j=1

bjSj , (2.4)

where the bj are integers defined modulo Nj that label inequivalent supersymmetric vacua.
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Dijkgraaf and Vafa argued that the exact superpotential of the theory can be deter-

mined by considering a matrix model with potential W (Φ̂) [3, 4]

∫

dΦ̂ exp
(

−g−1
s Tr W (Φ̂)

)

= exp
∞
∑

g=0

Fg g2g−2
s (2.5)

where Φ̂ is an N̂ × N̂ matrix in the limit N̂ → ∞. The integral has to be understood

as a saddle-point expansion around a critical point where N̂i of the eigenvalues sit in the

critical point ai. Note that N̂ is not related to the N from the field theory. The glueball

superfields are identified with the quantities

Si = gsN̂i , S =
∑̀

i=1

Si = gsN̂ (2.6)

in the matrix model and the exact superpotential is

Weff(S1, . . . , S`) =
∑̀

j=1

Nj
∂F0

∂Sj
+ 2πi

∑̀

j=1

bjSj (2.7)

where F0 is the genus zero free energy of the matrix model in the planar limit.

The central object in matrix model theory is the resolvent

ω(x) =
1

N̂
Tr

1

x − Φ̂
. (2.8)

At leading order in the 1/N̂ expansion, ω(x) is valued on the spectral curve Σ, a hyper-

elliptic Riemann surface

y2 =
1

(Nε)2
(

W ′(x)2 + f`−1(x)
)

. (2.9)

The numerical prefactor is chosen for convenience. In terms of this curve

ω(x) = W ′(x) − Nεy(x) . (2.10)

In (2.9), f`−1(x) is a polynomial of order ` − 1 whose ` coefficients are moduli that are

determined by the Si. In general, the spectral curve can be viewed as a double-cover of

the complex plane connected by ` cuts. For the saddle-point of interest only s of the cuts

may be opened and so only s of the moduli f`−1(x) can vary. Consequently y(x) has 2s

branch points and ` − s zeros:1

Σ : y2 = Zm(x)2σ2s(x) (2.11)

where ` = m + s and

Zm(x) =
m
∏

j=1

(x − zj) , σ2s(x) =
2s
∏

j=1

(x − σj) . (2.12)

1Occasionally, for clarity, we indicate the order of a polynomial by a subscript.

– 6 –
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The remaining moduli are related to the s parameters {Si} by (2.6)

Si = gsN̂i = Nε

∮

Ai

y dx , (2.13)

where the cycle Ai encircles the cut which opens out around the critical point ai of W (x).

Experience with the old matrix model teaches us that double-scaling limits can exist

when the parameters in the potential are varied in such a way that combinations of branch

and double points come together. In the neighbourhood of such a critical point,2

y2 −→ CZm(x)2Bn(x) , (2.14)

where zj , bi → x0, which we can take, without loss of generality, to be x0 = 0. The

double-scaling limit involves first taking a → 0

x = ax̃ , zi = az̃i , bj = ab̃j (2.15)

while keeping tilded quantities fixed. In the limit, we can define the near-critical curve

Σ−:3

Σ− : y2
− = Z̃m(x̃)2B̃n(x̃) . (2.16)

It was shown in [6], generalizing a result of [1], that in the limit a → 0, in its sense as a

complex manifold, the curve Σ factorizes as Σ−∪Σ+. The complement to the near-critical

curve is of the form

Σ+ : y2
+ = x2m+nF2s−n(x) . (2.17)

where F2s−n(x) is regular at a = 0.

It is important to stress that the above singularities are obtained on shell [1, 6]. The

family of spectral curves (2.14) corresponds to vacua of a given field theory. As such, the

family satisfies the F-term equations coming from the exact superpotential (2.7) relative

to the model and the choice of semiclassical vacuum. The solution to the problem of

engineering these singularities on shell, namely the problem of finding a field theory model

and tree level superpotential whose spectral curve exhibits the desired singularity in its

moduli space, is explained in detail in [6]. The case where there are no double zeroes,

m = 0, has been studied in [38, 39, 1]. The tree-level superpotential can be taken to be

W (Φ) = Nε TrN

[

Φn+1 − U Φ
]

, (2.18)

and the relative on-shell spectral curve is

y2 = (xn − U)2 − U2
c . (2.19)

At each of the critical values U = ±Uc, n branch points collide and the curve has an An−1

singularity. For instance, as U → Uc

y2 ≈ xn − (U − Uc) .

2We have chosen for convenience to take all the double zeros {zj} into the critical region.
3For polynomials, we use the notation f̃(x̃) =

Q

i
(x̃− f̃i), where f(x) =

Q

i
(x−fi), x = ax̃ and fi = af̃i.
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In the a → 0 limit, it was shown in [6] that the genus g free energy gets a dominant

contribution from Σ− of the form

Fg ∼
(

Na(m+n/2+1)
)2−2g

. (2.20)

Note that in this equation N is the one from the field theory and not the matrix model N̂ .

This motivates us to define the double-scaling limit [1, 6]

a → 0 , N → ∞ , ∆ ≡ Nam+n/2+1 = const . (2.21)

Moreover, the most singular terms in a in (2.20) depend only on the near-critical curve

(2.16) in a universal way.

Observe that eq. (2.20) matches the expected behaviour of the topological B model

free energy at the singularity [9]. In fact, as can be seen from (2.14) and (2.15)

∆ ∼ N

∫

y dx . (2.22)

More precisely, the double-scaling parameter is proportional to the period of the one-form

y dx on one of the cycles that vanish at the singularity. Moreover, this one-form corresponds

to the reduction of the holomorphic 3-form Ω on the underlying Calabi-Yau geometry

uv + y2 = W ′(x)2 + f(x) (2.23)

Ω =
dudvdx

√

uv − W ′(x)2 − f(x)
. (2.24)

This comes from the fact that 3-cycles in the Calabi-Yau correspond to two-spheres fibered

over the complex x plane. In particular

∫

Ω ∼
∫

y dx (2.25)

where Ω is integrated on a vanishing 3-cycle in the Calabi-Yau that reduces to one of the

vanishing one-cycles in the matrix mode spectral curve. Putting everything together, we

find that

Fg ∼ ∆2−2g ∼
(∫

y dx

)2−2g

∼
(∫

Ω

)2−2g

(2.26)

which is precisely the behaviour we expect for the free energy of the topological B model

on the Calabi-Yau [9], in agreement with the Dijkgraaf-Vafa correspondence. In section 3,

we will review the proof of eq. (2.20), [6] using the algorithms of [13, 14] based on the

matrix model loop equations and we will see relation (2.22) arise naturally. It is worth

stressing that this result is general, in the sense that it does not depend on the specific

kind of singularities one considers. In this particular respect, the methods used are more

powerful than ”old matrix model techniques”, where one is usually limited to considering

one-cut matrix model solutions.
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3. The matrix model double-scaling limit: higher genus terms

In this section, we will be concerned with the behaviour of the higher genus terms of the

matrix model free energy in the limit a → 0. The most powerful methods for calculating

the Fg involve orthogonal polynomials (see the reviews [10]); however, these techniques

have only been successfully applied to the case when the near critical curve has at most

two branch points (but any number of zeros). The only known way to calculate the Fg

in general involves analysing the loop equations and in particular using the algorithms

recently developed in [13, 14]. In the following, we will review these algorithms and the

proof based on them that

Fg ∼ ∆2−2g (3.1)

which was given in [6]. As we said above, this is the behaviour we expect given the

Dijkgraaf-Vafa correspondence between the matrix model and the topological B model.

3.1 The loop equations

The p-loop correlator, or p-point loop function, is defined as

W (x1, . . . , xp) ≡ N̂p−2
〈

tr
1

x1 − Φ̂
· · · tr 1

xp − Φ̂

〉

conn

=
d

dV
(xp) · · ·

d

dV
(x1)F , p ≥ 2 ,

(3.2)

where we have introduced the loop insertion operator d
dV (x), which, given a potential

V (x) =
∑

k tkx
k, is defined by

d

dV
(x) = −

∑

k

1

xk+1

d

dtk
. (3.3)

The p-loop correlator has the following genus expansion

W (x1, . . . , xp) =

∞
∑

g=0

1

N̂2g
W (g)(x1, . . . , xp) . (3.4)

In [13], Eynard found a solution to the matrix model loop equations that allows to write

down an expression for these multiloop correlators at any given genus in terms of a special

set of Feynman diagrams. The various quantities involved depend only on the spectral

curve of the matrix model and in particular one needs to evaluate residues of certain

differentials at the branch points of the spectral curve.

This algorithm and its extension to calculate higher genus terms of the matrix model

free energy [14] represent major progress in the solution of the matrix model via loop

equations [40 – 43]. This is particularly important because the orthogonal polynomial ap-

proach seems to fail in the multi-cut (> 2) case. A nice feature of these algorithms is that

they show directly how the information is encoded in the spectral curve. In particular, we

will be able to make some precise statements on the double-scaling limits of higher genus

quantities simply by studying the double-scaling limit of the spectral curve and its various

differentials.

– 9 –
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Given the matrix model spectral curve for an s-cut solution in the form (2.11) the

genus zero 2-loop function is given by

W (x1, x2) = − 1

2(x1 − x2)2
+

√

σ(x1)

2
√

σ(x2)(x1 − x2)2

− σ′(x1)

4(x1 − x2)
√

σ(x1)
√

σ(x2)
+

A(x1, x2)

4
√

σ(x1)
√

σ(x2)
,

(3.5)

where A is a symmetric polynomial given by

A(x1, x2) =
2s

∑

i=1

Li(x2)σ(x1)

x1 − σi
, (3.6)

where

Li(x2) =

s−2
∑

l=0

Li,lx
l
2 = −

s−1
∑

j=1

Lj(x2)

∫

Aj

dx
√

σ(x)

1

(x − σi)
(3.7)

and s is the number of cuts. The polynomials Lj(x) are related to the holomorphic 1-forms

and defined in appendix A

ωj =
Lj(x)dx
√

σ(x)
,

∫

Ak

ωj = δjk , j, k = 1, . . . , s − 1 . (3.8)

The genus zero 2-loop function for coincident arguments is

W (x1, x1) = lim
x2→x1

W (x1, x2) = −σ′′(x1)

8σ(x1)
+

σ′(x1)
2

16σ(x1)2
+

A(x1, x1)

4σ(x1)

=

2s
∑

i=1

1

16(x1 − σi)2
− σ′′

i

16σ′
i(x1 − σi)

+
Li(x)

4(x1 − σi)
,

(3.9)

where σ′
i = σ′(σi), σ′′

i = σ′′(σi). The other important object is the differential

dS2i−1(x1, x2) = dS2i(x1, x2) =

√

σ(x2)
√

σ(x1)





1

x1 − x2
− Li(x1)

√

σ(x2)
−

s−1
∑

j=1

Cj(x2)Lj(x1)



 dx1 ,

(3.10)

where i = 1, . . . , s and

Cj(x2) =

∫

Aj

dx
√

σ(x)

1

(x − x2)
. (3.11)

A crucial aspect of the one-form (3.10) is that it is analytic in x2 in the limit x2 → σ2i−1

or σ2i [13]

lim
x2→σi

dSi(x1, x2)
√

σ(x2)
=

1
√

σ(x1)





1

x1 − x2
−

s−1
∑

j=1

Lj(x1)

∫

Aj

dx
√

σ(x)

1

(x − x2)



 dx1 . (3.12)
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The subtlety is that in the definition of (3.11), the point x2 is taken to be outside the loop

surrounding the j-th cut, whereas in (3.12), x2 is inside the contour. Note also that

A(x1, x2) = −
2s

∑

i=1





s−1
∑

j=1

Lj(x2)Cj(σi)





σ(x1)

x1 − σi
(3.13)

and in particular

A(x1, σi) = Li(x1)σ
′(σi) . (3.14)

The expression of W (g)(x1, . . . , xp) can be found by evaluating a series of Feynman

diagrams of a cubic field theory on the spectral curve [13]. To this end, define the set T (g)
p

of all possible graphs with n external legs and with g loops. They can be described as

follows: draw all rooted skeleton trees ( trees whose vertices have valence 1, 2 or 3 ), with

p + 2g − 2 edges. Draw arrows on the edges from the root towards the leaves. Then draw

in all possible ways p − 1 external legs and g inner edges with the constraint that all the

vertices of the whole graph have valence three, namely that are always three and only three

edges emanating from any given vertex. Each such graph will also have some symmetry

factor [13].

Each diagram in then weighted in the following way. To each arrowed edge that is

part of the skeleton tree going from a vertex labelled by x1 to a vertex labelled by x2

associate the differential dS(x1, x2) (3.10). To each non-arrowed edge associate a genus

zero 2-loop differential G(x1, x2) = W (x1, x2) dx1 dx2 and to each internal vertex labelled

by x1 associate the factor (2εNy(x1)dx1)
−1. For any given tree T ∈ T (g)

p , with root x1 and

leaves xj, j = 2, . . . , p and with p + 2g − 2 vertices labelled by x′
v, v = 1, . . . , p + 2g − 2, so

that its inner edges are of the form v1 → v2 and its outer edges are of the form v → j, we

define the weight of the graph as follows

W(T ) =
1

(εN)p+2g−2

p+2g−2
∏

v=1

2s
∑

iv=1

Resx′
v→biv

1

2y(x′
v)dx′

v

∏

inner edges v→w

dSiv (x′
v, x

′
w)

×
∏

inner non-arrowed edges v′→w′

G2(x
′
v′ , x

′
w′)

∏

outer edges v→j

G2(x
′
v, xj)

(3.15)

In order to find an expression for Fg, g > 1, one should consider the same graphs relevant

for W (g)(x1) and do then the following [14]:

i) Eliminate the first arrowed edge of the skeleton tree. Labelling the first vertex by x1

and the second vertex by x2, this amounts to dropping the factor dS(x1, x2).

ii) The factor (2εNy(x2)dx2)
−1 has to be dropped and replaced by

∫ x2

q0
y(s)ds

y(x2)dx2
. (3.16)

Note that when evaluating the final residues at x2 = σi, one needs to expand the above

integral by setting q0 = σi [14]. It is also understood that the evaluation of the residues

– 11 –
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starts from the outer branches and proceeds towards the root. This procedure does not

apply for the genus one free energy whose expression has in any case been found via the

loop equations in [44 – 46].

We will consider the a → 0 limit of each element in (3.15). In this respect, it is useful

to choose a new basis of 1-cycles {Ãi, B̃i}, i = 1, . . . , s − 1, which is specifically adapted

to the factorization Σ → Σ− ∪ Σ+. The subset of cycles with i = 1, . . . , [n/2] vanish at

the critical point while the cycles i = [n/2] + 1, . . . , s − 1 are the remaining cycles which

have zero intersection with all the vanishing cycles. Using the results in appendix A for the

scaling of L, it is straightforward to argue that for a branch point bi in the critical region

dSi(x1, x2) −→ dS̃i(x̃1, x̃2) =
√

B̃(x̃2)
√

B̃(x̃1)





1

x̃1 − x̃2
− L̃i(x̃1)

√

B̃(x̃2)
−

p
∑

j=1

C̃j(x̃2)L̃j(x̃1)



 dx̃1 ,
(3.17)

where dS̃i is the analogous differential on Σ−, eq.(2.16), and Lj(x) → an/2−1L̃j(x̃) for

j ≤ [n/2]. Conversely, the differentials dSi(x1, x2) where i labels a branch point of the

spectral curve that remains outside of the critical region give a vanishing contribution in

the double-scaling limit. Likewise using equations (3.5), (3.6), (3.7) and (3.13) we have

G(x1, x2) = W (x1, x2) dx1dx2 −→ G̃(x̃1, x̃2) = W̃ (x̃1, x̃2) dx̃1dx̃2 , (3.18)

where G̃(x̃1, x̃2) is exactly the 2-point loop correlator on Σ−.

So far we have seen that the double points of the near-critical curve do not play a

role in taking the limit of the differentials. However, this is not the case for the final two

elements of the Feynman rules

y dx −→
√

Cam+n/2+1 y− dx̃ (3.19)

and
∫ x
q y(s)ds

y(x)dx
−→

∫ x̃
q̃ y−(s̃)ds̃

y−(x̃)dx̃
. (3.20)

To summarize: what we have found is that all the relevant quantities reduce to the anal-

ogous quantities on the near-critical curve in the limit a → 0. In particular, being careful

with the overall scaling, the genus g free energy has the limit

Fg −→ C1−g∆2−2g Fg(Σ−) . (3.21)

where we have emphasized that Fg(Σ−) depends only on Σ−. This is the result advertized

in (2.20) and the property of universality. Similiarly, the genus g p-point loop functions

have the limit

Wg(x1, . . . , xp) dx1 · · · dxp −→ C1−g−p/2∆2−2g−p W̃g(x̃1, . . . , x̃p) dx̃1 · · · dx̃p . (3.22)
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4. The genus one matrix model free energy

In this section, we will consider the double-scaling limit of the genus one free energy F1

in more detail. This term gives information on the states that become massless at the

singularity [7, 19]. The genus one matrix model free energy has been studied in the context

of the Dijkgraaf-Vafa correspondence in [45, 46]. In particular, the authors of [46] proposed

an expression for a general multicut matrix model solution based on conformal field theory

arguments by Kostov [47] and Moore [48]. This was later proved by Chekhov [44] by means

of the matrix model loop equations. See also [45, 49] for an expression of the matrix model

genus one free energy inspired by the correspondence with the topological B model. The

general expression is given by

F1 = − 1

24
log





2s
∏

k=1

Z(σk)





∏

1≤i<j≤2s

(σi − σj)





4
(

det
i,j=1,...,s−1

Nij

)12


 (4.1)

where s is the number of cuts of the matrix model solution and

Nij =

∫

Aj

xi−1

√

σ(x)
dx i, j = 1, . . . , s − 1 (4.2)

are periods of the holomorphic one-forms xi−1dx√
σ(x)

on the reduced spectral curve. This formula

was derived in [44] by considering the genus one 1-point function W (g=1)(x) and explicitly

inverting the relation
d

dV
(x)F1 = W (g=1)(x) . (4.3)

In the previous section, we have seen that in the double-scaling limit

W (g=1)(x) → 1

∆
W̃ (1)(x̃) (4.4)

where W̃ (1)(x̃) is the genus one one-point function relative to the near-critical spectral

curve Σ−

y2
−(x̃) = Z̃m(x̃) B̃n(x̃) . (4.5)

We can actually absorb the factor of ∆ in the definition of the curve itself

y2
− = ∆2Z̃m(x̃) B̃n(x̃) . (4.6)

Thus we obtain

d

dV
(x)F1 = W (g=1)(x) → W̃ (1)(x̃) =

d

dṼ
(x̃)F̃1 . (4.7)

We can relate the loop insertion operator d
dV (x) to d

dṼ
(x̃) as follows. Thanks to the iden-

tity [44, 14]
dσi

dV
(x) = χ

(1)
i (x) =

1

2NεZ(σi)
√

σ(x)

(

1

x − σi
+ · · ·

)

dx (4.8)
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where the differential χ
(1)
i (x) is defined in (B.1), we find

dσi

dV
(x) → a

2∆ Z̃m(σ̃i)
√

B̃n(x̃)

(

1

x̃ − σ̃i
+ · · ·

)

dx̃ = aχ̃
(1)
i (x̃) = a

dσ̃i

dṼ
(x̃) =

dσi

dṼ
(x̃) .

This implies that
d

dV
(x) → d

dṼ
(x̃) . (4.9)

Therefore, by (4.7), we conclude that in the double-scaling limit

F1 → F̃1 = − 1

24
log



∆n
n

∏

i=1

Z̃(σ̃i)





∏

1≤i<j≤n

(σ̃i − σ̃j)





4
(

det
i,j=1,...,[n/2]

Ñij

)12


 ,

(4.10)

where Ñij are periods on the near-critical spectral curve Σ−. This is strictly correct only

modulo the addition of a constant, but this plays no role when one considers general

correlators obtained from F1 like W (1)(x) in (4.3). We also see that the double-scaled

free energy depends in general on the structure of the near-critical spectral curve. In this

respect, observe that the general expression of F1, eq.(4.1), depends on the basis of A-

cycles we choose on the spectral curve. Upon a change of basis, which would correspond

physically to an electric-magnetic duality transformation, F1 changes non-trivially. The

expression (4.10) contains an implicit choice of basis in which the degeneration of the

original spectral curve Σ into Σ+∪Σ− is made manifest [1, 6]. In particular, as in section 3,

we choose a basis such that [n/2] of the starting A-cycles shrink at the singularity and

reduce to A-cycles on the near-critical spectral curve Σ−.

In the case of the An−1 singularities studied in [1], where the near-critical curve is

y2
− = B̃n(x̃) (4.11)

we find that in the limit ∆(n) → 0

F1 → − n

24
log ∆(n) . (4.12)

In particular, for the conifold singularity, n = 2, we retrieve the well-known result

F1 = − 1

12
log ∆(2) . (4.13)

In the case of an ”old matrix model” singularity, where m double zeroes collide with

one branch point of the reduced spectral curve, σ0, and correspondingly the near-critical

spectral curve is trivial, eq.(4.10) yields

F1 → − 1

24
log ∆ Z̃(σ̃0) (4.14)

which is indeed consistent with the result given in [40].
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The divergence of F1 and equivalently of the topological B model free energy Ftop,1 in

the limit ∆ → 0 indicates that there are states in the field theory that become massless

at the singularity [7, 19]. Consider type IIB string theory compactified on a Calabi-Yau

space in the proximity of a conifold singularity. Vafa argued that (4.13) is consistent with

the appearance of a single massless 4d N = 2 hypermultiplet in the low-energy theory [7].

Similarly, type IIB compactified on a Calabi-Yau in the proximity of an An−1 singularity

yields a 4d N = 2 theory close to an Argyres-Douglas point where mutually non-local

electric and magnetic particles become massless [50 – 52]. These extra massless particles

also appear in the N = 1 theories studied via the Dijkgraaf-Vafa matrix model [38, 1, 6].

Vafa also made a proposal about a general expression for F1

F1 = F1 + F̄1 = − 1

12

∑

BPS states

log m2
i (4.15)

where the sum is over BPS states of the N = 2 4d theory. These states can be electrically

and magnetically charged and come from D3-branes wrapping a supersymmetric 3-cycle

Ci in the Calabi-Yau. Their mass is given by

m2
i =

∫

Ci
Ω ·

∫

Ci
Ω̄

∫

CY Ω ∧ Ω̄
. (4.16)

This is a generalization of the conifold result (4.13) where m2 = |∆|2 and, as stressed

in [7], it might not be the full answer. For An−1 singularities with n odd, the genus one

expression (4.12) is indeed not matching the proposal (4.15). This is probably due to the

fact that the states becoming massless are mutually non-local. It would be interesting to

understand better the nature of this result.

5. Evaluation of the genus 2 free energy

For one-cut matrix model solutions the method of orthogonal polynomials allows to evaluate

the matrix model free energy at all genera [10]. In the case of multicut solutions, this

technique is not generally available. In order to evaluate higher genus terms in the free

energy, we will resort to the recently developed algorithms that provide an exact solution

to the matrix model loop equations [13, 14] that we reviewed in section 3. In particular, we

will find the expression for the genus two free energy in the case where the spectral curve

has no double zeroes. This is relevant for the An−1 singularities considered in [1].

The genus two (5.20) and the genus one (4.10) results show that the double-scaled free

energy depends in a complex way on the details of the near-critical spectral curve. However,

we will see that in the simplest case, namely the conifold singularity, this dependence is

trivial and the expressions simplify drastically. This is due to the fact that it is possible to

choose a basis of A-cycles on the original spectral curve, before the double-scaling limit, in

such a way that the the near-critical curve has genus zero, it is a Riemann sphere. Thus

we recover the known result [9]

u2 + v2 + y2 + x2 = µ → F2 = − 1

240µ2
. (5.1)
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x1

x2x3 x3

x2

x1

Figure 2: Diagrams (I) and (II).

The explicit evaluation of F2 involves calculating three Feynman diagrams (see figures 2

and 3). Diagram (I) is equivalent to

(I) =

∫

Cx3>Cx2>Cx1

dx3

2πi

dx2

2πi

dx1

2πi

∫ x3

q0
y(s)ds

y(x3)dx3

dS(x3, x2)

2y(x2)
W (x3, x2)

dS(x2, x1)

2y(x1)
W (x1, x1)

=

∫

Cx3>Cx2

dx3

2πi

dx2

2πi

∫ x3

q0
y(s)ds

y(x3)dx3

dS(x3, x2)

2y(x2)
W (x3, x2)W (1)(x2) . (5.2)

Diagram (II) is

(II) =

∫

Cx3>Cx2>Cx1

dx3

2πi

dx2

2πi

dx1

2πi

∫ x3

q0
y(s)ds

y(x3)dx3

dS(x3, x2)

2y(x2)

dS(x2, x1)

2y(x1)
W (x3, x1)W (x2, x1)

=

∫

Cx3>Cx2

dx3

2πi

dx2

2πi

∫ x3

q0
y(s)ds

y(x3)dx3

dS(x3, x2)

2y(x2)
W (x3, x2, x2) . (5.3)

Similarly, diagram (III) gives

(III) =

∫

Cx3

dx3

2πi

∫ x3

q0
y(s)ds

y(x3)dx3

∫

Cx1

dx1

2πi

dS(x3, x1)

2y(x1)
W (x1, x1)

∫

Cx2

dx2

2πi

dS(x3, x2)

2y(x2)
W (x2, x2)

=

∫

Cx3

dx3

2πi

∫ x3

q0
y(s)ds

y(x3)dx3
W (1)(x3)W (1)(x3) . (5.4)

Finally, as shown in [14]

2F2 = 2(I) + 2(II) + (III) . (5.5)

In the following, we will only consider cases where the spectral curve has no double points,

and we will set

y2 = ε2σ2s(x) . (5.6)
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Figure 3: Diagram (III).

(I): Using the expression of W (1)(x) evaluated in the appendix (C.2) and the differen-

tials χ
(n)
i (x3), (B.2)(B.6), we find

∫

Cx2

dx2

2πi

dS(x3, x2)

2y(x2)
W (x3, x2)W

(1)(x2)

=

2s
∑

i=1

1

2ε

[

1

16σ′
i

G(x3, σi)χ
(3)
i (x3)+

(

1

16σ′
i

∂

∂x2
G(x3, x2)|x2=σi

− σ′′
i

32σ′
i
2
G(x3, σi)

)

χ
(2)
i (x3)

+

(

3σ′′
i
2 − 2σ′

iσ
′′′
i

192σ′
i
3

G(x3, σi) +
1

32σ′
i

∂2

∂x2
2

G(x3, x2)|x2=σi

− σ′′
i

32σ′
i
2

∂

∂x2
G(x3, x2)|x2=σi

)

χ
(1)
i (x3)

+G(x3, σi)
L(2)

i (σi)

16σ′
i

χ
(1)
i (x3)+

∑

j 6=i

(

1

16
χ̂

(2)
j (σi)+Bjχ̂

(1)
j (σi)

)

G(x3, σi)

σ′
i

χ
(1)
i (x3)

+
Bi

σ′
i

G(x3, σi)χ
(2)
i (x3) (5.7)

+

(

Bi

σ′
i

∂

∂x2
G(x3, x2)|x2=σi

− Biσ
′′
i

2σ′
i
2

G(x3, σi) + Bi
Li(σi)

σ′
i

G(x3, σi)

)

χ
(1)
i (x3)

]

,

where we introduced the following notation

G(x3, x2) =

√

σ(x3)

2(x3 − x2)2
− σ′(x3)

4(x3 − x2)
√

σ(x3)
+

A(x3, x2)

4
√

σ(x3)
, (5.8)

A(x1, x2) =
2s

∑

i=1

Li(x2)σ(x1)

x1 − σi
, (5.9)

χ̂
(n)
k (x) = 2ε

√

σ(x) χ
(n)
k (x) =

(

1

(x − σk)n
+ L(n)

k (x)

)

, (5.10)

L(2)
i (x2) = −

s−1
∑

j=1

Lj(x2)

∫

Aj

dx
√

σ(x)

1

(x − σi)2
, (5.11)

σ′
i = σ′(σi) , σ′′

i = σ′′(σi) , . . . (5.12)
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We find that

(I) =
1

4ε2

2s
∑

k=1

∫

Cx3

dx3

2πi

∫ x3

Ak

√
σ(s)ds

σ(x3)3/2

×
2s

∑

i=1

[

1

16σ′
i

Ĝ(x3, σi)χ̂
(3)
i (x3)

+

(

1

16σ′
i

∂

∂x2
Ĝ(x3, x2)|x2=σi

− σ′′
i

32σ′
i
2
Ĝ(x3, σi)

)

χ̂
(2)
i (x3)

+

(

3σ′′
i
2 − 2σ′

iσ
′′′
i

192σ′
i
3

Ĝ(x3, σi) +
1

32σ′
i

∂2

∂x2
2

Ĝ(x3, x2)|x2=σi

− σ′′
i

32σ′
i
2

∂

∂x2
Ĝ(x3, x2)|x2=σi

)

χ̂
(1)
i (x3)

+Ĝ(x3, σi)
L(2)

i (σi)

16σ′
i

χ̂
(1)
i (x3) +

∑

j 6=i

(

1

16
χ̂

(2)
j (σi)+Bjχ̂

(1)
j (σi)

)

Ĝ(x3, σi)

σ′
i

χ̂
(1)
i (x3)

+
Bi

σ′
i

Ĝ(x3, σi)χ̂
(2)
i (x3) +

(

Bi

σ′
i

∂

∂x2
Ĝ(x3, x2)|x2=σi

− Biσ
′′
i

2σ′
i
2

Ĝ(x3, σi)

+ Bi
Li(σi)

σ′
i

Ĝ(x3, σi)

)

χ̂
(1)
i (x3)

]

(5.13)

where

Ĝ(x3, σk) =
√

σ(x3) G(x3, σk) . (5.14)

The next step is to expand

∫ x3

σk

√

σ(s)ds

σ(x3)3/2

in the proximity of the branch point σk itself [14]. Setting ε = x − σk, we find

∫ x3

Ak

√

σ(s)ds

σ(x3)3/2
=

2

3σ′
k

(

1 + c1,kε + c2,kε
2 + c3,kε

3 + O(ε4)
)

where

c1,k = −3σ′′
k

5σ′
k

c2,k =
3(8σ′′

k
2 − 5σ′

kσ
′′′
k )

70σ′
k
2

c3,k = −60σ′′
k
3 − 76σ′

kσ
′′
kσ′′′

k + 105σ′
k
2σ′′′′

k

315σ′
k
3
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Finally

(I) =

2s
∑

k=1

1

6ε2σ′
k

[

1

16σ′
k

(

c3,kσ′
k

4
+

c2,kA(σk, σk)

4
+

c1,k(6A(1,0)(σk, σk) − σ′′′
k )

24

+
6A(2,0)(σk, σk) + 12σ′

kL
(3)
k (σk) − σ′′′′

k

48

)

+
1

16σ′
k

(

3c3,kσ′
k + c2,kσ′′

k

4
+

c1,k(6A(0,1)(σk, σk) + σ′′′
k + 18σ′

kL
(2)
k (σk))

24

+
A(1,1)(σk, σk)

4
+

σ′′
kL

(2)
k (σk) + 3σ′

kL
(2)(σk)′

4

)

+

(

Bk

σ′
k

−
σ′′

k

32σ′
k
2

)

×

(

c2,kσ′
k

4
+

c1,kA(σk, σk)

4
+

6A(1,0)(σk, σk) − σ′′′
k + 6σ′

kL
(2)
k (σk)

24

)

+

(

Bk

σ′
k

−
σ′′

k

32σ′
k
2

) (

3c2,kσ′
k

4
+ c1,k

σ′′
k + 3σ′

kLk(σk)

4

+
6A(0,1)(σk, σk) + σ′′′

k + 6σ′′
kLk(σk) + 18σ′

kL
′
k(σk)

24

)

+
1

32σ′
k

(

5c3,kσ′
k

2
+ c2,k

2σ′′
k + 5A(σk, σk)

2
+ c1,k

σ′′′
k + 4σ′′

kLk(σk) + 10σ′
kL

′
k(σk)

4

+
6A(0,2)(σk, σk) + σ′′′′

k + 6σ′′′
k Lk(σk) + 24σ′′

kLk(σk)′ + 30σ′
kL

′′
k(σk)

24

)

+

(

3σ′′
k

2 − 2σ′
kσ′′′

k

192σ′
k
3

−
Bkσ′′

k

2σ′
k
2

+ Bk

Lk(σk)

σ′
k

+
L

(2)
k (σk)

16σ′
k

+
∑

j 6=k

1

σ′
k

(

1

16
χ̂

(2)
j (σk) + Bjχ̂

(1)
j (σk)

)) (

c1,kσ′
k

4
+

A(σk, σk)

2

)]

(5.15)

where we used the notation

A(i,j)(x, y) =
∂i

∂xi

∂j

∂yj
A(x, y) . (5.16)

(II): Using the expression of W (x2, x2, x3), eq. (C.4), we find

∫

Cx2

dx2

2πi

dS(x3, x2)

2y(x2)
W (x3, x2, x2)

=
2s

∑

i=1

[

1

16
χ

(1)
i (x3)χ

(3)
i (x3) +

(

A(σi, σi)

8σ′
i

− σ′′
i

32σ′
i

)

χ
(1)
i (x3)χ

(2)
i (x3)

+





A(1,0)(σi, σi)

8σ′
i

+
A(σi, σi)

2

16σ′
i
2

− σ′
i

16

∑

j 6=i

1

σ′
j(σi − σj)2

− σ′′
i A(σi, σi)

16σ′
i
2



 χ
(1)
i (x3)

2 (5.17)

+
∑

j 6=i

(

1

16(σj − σi)2

(

σ′
i
2 + σ′

j
2

σ′
iσ

′
j

)

+
A(σi, σj)

2

16σ′
iσ

′
j

+
A(σi, σj)(σ

′
j − σ′

i)

16(σi − σj)σ
′
iσ

′
j

)

χ
(1)
j (x3)χ

(1)
i (x3)

]

.
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Similarly for (II) we find

(II) =
2s

∑

k=1

1

6ε2σ′
k

[

c3,k

16
+

L(3)
k (σk)

16
+

c2,k

16σ′
k

A(σk, σk) +
c1,k

16σ′
k

A(1,0)(σk, σk)

+
1

32σ′
k

A(2.0)(σk, σk) +

(

A(σk, σk)

8σ′
k

− σ′′
k

32σ′
k

)

×
(

c2,k + L(2)
k (σk) +

c1,kA(σk, σk) + A(1,0)(σk, σk)

σ′
k

)

+





A(1,0)(σk, σk)

8σ′
k

+
A(σk, σk)

2

16σ′
k
2

−σ′
k

16

∑

j 6=k

1

σ′
j(σk − σj)2

−σ′′
kA(σk, σk)

16σ′
k
2





×
(

c1,k +
2A(σk, σk)

σ′
k

)

+
∑

j 6=k

2

(

1

16(σj − σk)2

(

σ′
k
2 + σ′

j
2

σ′
kσ

′
j

)

+
A(σk, σj)

2

16σ′
kσ′

j

+
A(σk, σj)(σ

′
j − σ′

k)

16(σk − σj)σ′
kσ

′
j

)

(

1

σk − σj
+

A(σk, σj)

σ′
j

)

]

(5.18)

(III): From eqs. (5.4) and (C.2), we find

(III) =

2s
∑

k=1

1

6ε2σ′
k

[

c3,k + 2c1,kL(2)
k (σk) + 2L(2)

k
′(σk)

256

+
c1,k

128





∑

j 6=k

1

(σk − σj)2
+ L(2)

j (σk)



 +
1

128





∑

j 6=k

− 2

(σk − σj)3
+ L(2)′

j(σk)



 +

+
Bk

8

(

c2,k + L(2)
k (σk) +

c1,kA(σk, σk) + A(1,0)(σk, σk)

σ′
k

)

+
∑

j 6=k

Bj

(

c1,k

8

(

1

σk − σj
+

A(σj , σk)

σ′
j

)

+
1

8

(

− 1

(σk − σj)2
+

A(1,0)(σk, σj)

σ′
j

))

+
Bk

8

∑

j 6=k

(

1

(σk − σj)2
+ L(2)

j (σk)

)

+ B2
k

(

c1,k + 2
A(σk, σk)

σ′
k

)

+2Bk

∑

j 6=k

Bj

(

1

σk − σj
+

A(σk, σj)

σ′
j

)

]

. (5.19)

Therefore, the final expression for the genus two free energy is

F2 =
1

ε2

2s
X

i=1

 

−
157σ′′

i
3

15360σ′
i
4 +

491σ′′
i σ′′′

i

46080σ′
i
3 −

35σ′′′′
i

3072σ′
i
2 +

35σ′′
i

2
A(σi, σi)

768σ′
i
4 −

11σ′′′
i A(σi, σi)

576σ′
i
3 −

49σ′′
i A(σi, σi)

2

640σi
4

+
5A(σi, σi)

3

96σ′
i
4

−
37σ′′

i L
(2)(σi)

2560σ′
i
2

+
A(σi, σi)L

(2)
i (σi)

24σ′
i
2

+
13L(2)′(σi)

1536σ′
i

+
5L

(3)
i (σi)

384σ′
i

−
11σ′′

i L
′
i(σi)

768σ′
i
2
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+
A(σi, σi)L

′
i(σi)

32σ′
i
2

+
5L′′

i (σi)

768σ′
i

−
47σ′′

i A(0,1)(σi, σi)

7680σ′
i
3

+
5A(σi, σi)A

(0,1)(σi, σi)

384σ′
i
3

+
A(0,2)(σi, σi)

768σ′
i
2

−
89σ′′

i A(1,0)(σi, σi)

3840σ′
i
3

−
σ′′

i A(1,0)(σi, σi)

160σ′
i
2

+
7A(σi, σi)A

(1,0)(σi, σi)

96σ′
i
3

+
A(1,1)(σi, σi)

384σ′
i
2

+
5A(2,0)(σi, σi)

768σ′
i
2

«

+
1

ε2

2s
X

i=1

2s
X

j 6=i

„

−
1

768(σi − σj)3σ′
i

+
1

48(σi − σj)3σ′
j

+
σ′

j

48(σi − σj)3σ′
i
2

−
σ′′

i

384(σi − σj)2σi
2

+
σ′′

i

10(σi − σj)2σ′
iσ

′
j

+
σ′′

j

1536(σi − σj)2σ′
iσ

′
j

+
σ′′

i σ′′
j

384(σi − σj)σ′
i
2σ′

j

+
A(σi, σi)

128(σi − σj)2σ′
i
2
−

A(σi, σi)

3(σi − σj)2σ′
iσ

′
j

−
σ′′

j A(σi, σi)

128(σi − σj)σ′
i
2σ′

j

+
A(σi, σj)

24(σi − σj)2σ′
i
2

+
A(σi, σj)

48(σi − σj)2σ′
j
2
−

A(σi, σj)

48(σi − σj)2σ′
iσ

′
j

+
σ′′

i σ′′
j A(σi, σj)

512σ′
i
2σ′

j
2

+
σ′′

i σ′′
j A(σi, σj)

1536σ′
i
3σ′

j

−
σ′′

j A(σi, σi)A(σi, σj)

192σ′
i
2σ′

j
2

−
σ′′

j A(σi, σi)A(σi, σj)

384σ′
i
3σ′

j

−
A(σi, σj)

2

48(σi − σj)σ′
iσ

′
j
2

+
A(σi, σj)

2

24(σi − σj)σ′
i
2σ′

j

+
A(σi, σj)

3

48σ′
i
2σ′

j
2

−
A(σj , σj)

384(σi − σj)2σ′
iσ

′
j

−
σ′′

i A(σj , σj)

96(σi − σj)σ′
i
2σ′

j

+
A(σi, σi)A(σj , σj)

32(σi − σj)σ′
i
2σ′

j

−
σ′′

i A(σi, σj)A(σj , σj)

128σ′
i
2σ′

j
2

−
σ′′

i A(σi, σj)A(σj, σj)

384σ′
i
3σ′

j

+
A(σi, σi)A(σi, σj)A(σj , σj)

48σ′
i
2σ′

j
2

+
A(σi, σi)A(σi, σj)A(σj , σj)

96σ′
i
3σ′

j

−
σ′′

i L
(2)
j (σi)

512σ′
i
2 +

A(σi, σi)L
(2)
j (σi)

192σ′
i
2 +

L
(2)
j

′(σi)

1536σ′
i

−
σ′′

j A(0,1)(σi, σj)

1536σ′
iσ

′
j
2 +

A(σj, σj)A
(0,1)(σi, σj)

384σ′
iσ

′
j
2

!

(5.20)

Let us consider the limit

y2 = ε2σ2s(x) −→ ε2 (xs − as) , a → 0 (5.21)

where s of the branch points come together. In the double-scaling limit

a → 0 , ε → ∞ , ∆ = εas/2+1 = cnst (5.22)

we find

F2 −→ Fg(Σ−)

∆2
, Σ− : y2

− = x̃s − ãs (5.23)

as explained in section 3. However, the final result will not simplify in general. In fact, it

depends on the details of the near-critical spectral curve, which has genus [(s − 1)/2]. An

exception to this is given by the case of the conifold singularity, where the original spectral

curve becomes in the limit

y2 ≈ ε2(x − a)(x − b) , a, b → 0 , (5.24)

which is essentially the spectral curve associated to a Gaussian matrix model [6]. As in

section 3, it is convenient to choose one of the A-cycles of the original spectral curve to

be a loop encircling the cut going from branch point a to branch point b. This cycle will

reduce to an A-cycle on the near-critical spectral curve

y2
− = σ̃(x̃) = (x̃ − ã)(x̃ − b̃) (5.25)
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where, as before, the tilded quantities are finite in the limit a, b → 0. The above near-

critical curve is actually a Riemann sphere. In particular, one can check by evaluating the

residues of all the integrands at infinity that all periods of the form
∫

A

dx̃
√

σ̃(x̃)

1

(x̃ − σ̃i)n
(5.26)

are zero. The expression of F2 simplifies dramatically

F2 → − 4

15ε2(a − b)4
= − 1

240S2
, (5.27)

where

S =

∫

A
y dx → ε(a − b)2

8
∼ ∆ , (5.28)

and in terms of S the genus zero free energy is given by

F0 ≈ 1

2
S

∂F0

∂S
≈ 1

2
S2 log S . (5.29)

Thus, (5.27) indeed matches the expected result for the genus two free energy at a conifold

singularity [9], which is equivalent to the c = 1 non-critical bosonic string [20]. This

particular singularity is obtained from a 2-cut solution with a cubic superpotential in the

limit where the two cuts touch each other. The fact that this limit should be equivalent to

the c = 1 non-critical string was also observed in [23].

6. Conclusion

The class of matrix model DSLs that are associated to the large N field theory DSLs

introduced in [1] define a class of c ≤ 1 non-critical bosonic strings [6]. They fall into

different universality classes from the ones usually considered in the old matrix model.

We argued that these non-critical bosonic strings are related to the topologically twisted

non-critical superstring backgrounds of the form SL(2)/U(1) × LG(Xn) that are dual to

the large N double-scaled field theory and the associated four-dimensional double-scaled

LST at the corresponding An−1 singularity.

To study the matrix models, and the relevant multicut solutions, we used the techniques

of Chekhov and Eynard based on loop equations. We showed in general that the scaling

of the higher genus terms in the perturbative expansion of the matrix model free energy

matches precisely the scaling of the topological B model free energy in the vicinity of the

Calabi-Yau singularity, which is consistent with the Dijkgraaf-Vafa correspondence.

We also evaluated the genus one and two terms explicitly for the spectral curves that

are related to An−1 singularities, recovering the conifold result in the n = 2 case. These

techniques allow to study multicut solutions where the ”old matrix model” tools are not

generally available, but further work would be needed to find the exact expression of the

perturbative matrix model free energy at all orders for the An−1 singularities with n > 2.

The direct computation of higher order terms is more cumbersome but could be performed

with the aid of a computer. One might be able to find an exact expression by deriving
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recursion relations for the coefficients of the genus expansion for this particular class of

singularities. However, this might require a different approach from the loop equations,

in particular an extension of orthogonal polynomial techniques to multicut matrix model

solutions. It would also be interesting to check if this perturbative series needs a non-

perturbative completion like in the conifold case. Such completion should correspond to

D-brane effects on the non-critical string side as in [53]. One should also perform the

topological twist of the SL(2)/U(1) × LG model and determine the non-critical bosonic

string explicitly.

Finally, it would certainly be interesting to use independent techniques to rederive the

topological quantities evaluated in the paper and in particular find the relation between

the BCOV algorithm [9] to evaluate the topological B model free energy for the non-

compact Calabi-Yaus that admit a matrix model description and the algorithm of Eynard

and Chekhov for the matrix model free energy. This point was recently addressed in [54].

Showing the equivalence of the two procedures would amount to a proof of the Dijkgraaf-

Vafa conjecture at every order in the genus expansion.
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A. Some double-scaling formulae

In this appendix, we consider the double-scaling limit of various quantities defined on the

curve Σ (2.11). This is most conveniently done in the basis {Ãi, B̃i} of 1-cycles described

in section 3. In particular, for i ≤ [n/2] these are cycles on the near-critical curve Σ− in

the double-scaling limit.

The key quantities that we will need are the periods

Mij =

∮

B̃j

xi−1

√

σ(x)
dx , Nij =

∮

Ãj

xi−1

√

σ(x)
dx . (A.1)

First of all, let us focus on Nij where j ≤ [n/2], but i arbitrary. By a simple scaling

argument, as a → 0,

Nij =

∫ b+
(j)

b−
(j)

xi−1

√

B(x)
dx −→ ai−n/2

∫ b̃+
(j)

b̃−
(j)

x̃i−1

√

B̃(x̃)
dx̃ = ai−n/2 f

(N)
ij (b̃l) , (A.2)

for some function f
(N)
ij of the branch points of Σ−. Here, b±(j) are the two branch points

enclosed by the cycle Ãj . A similar argument shows that Mij scales in the same way:

Mij −→ ai−n/2 f
(M)
ij (b̃l) . (A.3)

So both Nij and Mij, for i, j,≤ [n/2], diverge in the limit a → 0. On the contrary, by using

a similar argument, it is not difficult to see that, for j > [n/2], Nij and Mij are analytic

as a → 0 since the integrals are over non-vanishing cycles.
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In summary, in the limit a → 0, the matrices N and M will have the following block

structure

N −→
(

N−− N
(0)
−+

0 N
(0)
++

)

, M −→
(

M−− M
(0)
−+

0 M
(0)
++

)

, (A.4)

where by − or + we denote indices in the ranges {1, . . . , [n/2]} and {[n/2] + 1, . . . , s − 1}
respectively. In (A.4), N−− and M−− are divergent while the remaining quantities are

finite as a → 0.

We also need the inverse L = N−1. In the text, we use the polynomials Lj(x) =
∑s−1

k=1 Ljkx
k−1, which enter the expression of the holomorphic 1-forms associated to our

basis of 1-cycles,
∮

Ãi

ωj = δij . (A.5)

These 1-forms are equal to

ωj(x) =
Lj(x)
√

σ(x)
dx =

∑s−1
k=1 Ljkx

k−1

√

σ(x)
dx ,

∮

Ai

ωj(x) = δij (A.6)

where i, j = 1, . . . , s − 1. From the behaviour of N in the limit a → 0, we have

L = N−1 −→





N−1
−− N
0

(

N
(0)
++

)−1



 , N = −N−1
−− N

(0)
−+

(

N
(0)
++

)−1
. (A.7)

Since N−− is singular we see that L is block diagonal in the limit a → 0. This is just an

expression of the fact that the curve factorizes Σ → Σ− ∪Σ+ as a → 0. In this limit, using

the scaling of elements of Ljk, we find, for j ≤ [n/2],

ωj −→
∑[n/2]

k=1 (f (N))−1
jk x̃k−1

√

B̃(x̃)
dx̃ = ω̃j . (A.8)

the holomorphic 1-forms of Σ−. While for j > [n/2],

ωj −→
∑s−1

k>[n/2](N
(0)
++)−1

jk xk−n/2−1

√

F (x)
dx , (A.9)

are the holomorphic 1-forms of Σ+.

B. The explicit expression of χ
(n)
i (p)

Using the formalism developed in [13] and [14] to solve the matrix model loop equations,

one can easily find the expression of the differentials χ
(n)
i (p) defined by

(

K̂ − 2W0(p)
)

χ
(n)
i (p) =

1

(p − σi)n
, (B.1)
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where σi is a branch point of the matrix model spectral curve. These 1-differentials appear

quite naturally in the expression of higher loop correlators in the matrix model and in the

integration steps leading to F2. We have

χ
(n)
i (p) = Resq→σi

(

dSi(p, q)

2y(q)

1

(q − σi)n

)

(B.2)

Given the expression of dSi(p, q), we can easily perform a Taylor expansion in q around the

branch point σi and find the residue. We will mainly consider the case where the matrix

model spectral curve has no double points, setting

y2 = ε2σ2s(x) . (B.3)

In this case

dSi(p, q)

y(q)
=

dSi(p, q)

ε
√

σ(q)
=

1

ε
√

σ(p)





1

p − q
−

s−1
∑

j=1

Lj(p)

∫

Aj

dx
√

σ(x)

1

(x − q)



 dp

Note also that the expression in brackets is analytic in q. Then, for instance, we find that

χ
(1)
i (p) =

1

2ε
√

σ(p)





1

p − σi
−

s−1
∑

j=1

Lj(p)

∫

Aj

dx
√

σ(x)

1

(x − σi)



 dp

=
1

2ε
√

σ(p)

(

1

p − σi
+ Li(p)

)

dp =
1

2ε
√

σ(p)

(

1

p − σi
+

A(p, σi)

σ′
i

)

dp (B.4)

χ
(2)
i (p) =

1

2ε
√

σ(p)





1

(p − σi)2
−

s−1
∑

j=1

Lj(p)

∫

Aj

dx
√

σ(x)

1

(x − σi)2



 dp (B.5)

and in general

χ
(n)
i (p) =

1

2ε
√

σ(p)

1

(n − 1)!

dn−1

dqn−1





1

p − q
−

s−1
∑

j=1

Lj(p)

∫

Aj

dx
√

σ(x)

1

(x − q)



 |q=σi
dp

(B.6)

The above expressions can be generalized to the case where the spectral curve is of the

form

y2 = M(x)2σ(x) , (B.7)

χ
(n)
i (p) =

1

2
√

σ(p)

1

(n − 1)!

dn−1

dqn−1

1

M(q)





1

p − q
−

s−1
∑

j=1

Lj(p)

∫

Aj

dx
√

σ(x)

1

(x − q)



 |q=σi
dp .

(B.8)

C. Evaluation of W (1)(p) and W (p, p, q)

In this section, we are going to evaluate two loop-functions whose expression is needed later

for F2, the genus one one-loop function W (1)(p) and the genus zero three-loop function

– 25 –



J
H
E
P
0
7
(
2
0
0
6
)
0
0
6

W (p, p, q). Let us start from W (1)(p). Using the diagrammatic rules of [13] we find

W (1)(x2) =
2s

∑

i=1

Resx1→σi

(

dSi(x2, x1)

2y(x1)
W (x1, x1)

)

(C.1)

=
2s

∑

i=1

Resx1→σi

[

dSi(x2, x1)

2y(x1)

(

1

16(x1 − σi)2
+

Bi

x1 − σi

)]

=

2s
∑

i=1

1

16
χ

(2)
i (x2) + Biχ

(1)
i (x2) , (C.2)

where

Bi ≡



− σ′′(σi)

8σ′(σi)
+

∑

j 6=i

1

8(σi − σj)
+

A(σi, σi)

4σ′(σi)



 =

(

− σ′′(σi)

16σ′(σi)
+

A(σi, σi)

4σ′(σi)

)

. (C.3)

This is exactly the expression given for instance in [44], once we use the identity

A(σi, σi) = Li(σi)σ′(σi) .

Then, let us evaluate the genus zero 3-loop function with two coincident arguments W (x2,

x2, x3). We find

W (x2, x2, x3) =

2s
∑

i=1

Resx1→σi

(

dSi(x2, x1)

2y(x1)
W (x1, x2)W (x1, x3)

)

=

2s
∑

i=1

Resx1→σi

[

dSi(x2, x1)

2y(x1)

(

σ′(σi)

4(x2 − σi)
√

σ(x2)
+

A(x2, σi)

4
√

σ(x2)

)

(

σ′(σi)

4(x3 − σi)
√

σ(x3)
+

A(x3, σi)

4
√

σ(x3)

)

1

σ′(σi)(x1 − σi)

]

=
2s

∑

i=1

(

σ′(σi)

4(x2 − σi)
√

σ(x2)
+

A(x2, σi)

4
√

σ(x2)

)

×
(

σ′(σi)

4(x3 − σi)
√

σ(x3)
+

A(x3, σi)

4
√

σ(x3)

)

χ
(1)
i (x2)

σ′(σi)

=
2s

∑

i=1

ε2σ′(σi)

4
χ

(1)
i (x2)

2χ
(1)
i (x3) . (C.4)
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